

蔗糖-葡萄糖-果糖含量(己糖激酶法)测定试剂盒说明书

(货号: BP10325F 紫外法 48样 有效期: 3个月)

一、产品简介:

在大多数植物、水果和食品中发现蔗糖,葡萄糖和果糖。蔗糖和果糖在特异性酶的作用下转化为葡萄糖,葡萄糖在己糖激酶等酶复合物作用下,同时使 NADP·还原成 NADPH,通过检测 340nm 下 NADPH 的增加量,分别计算得到蔗糖、葡萄糖和果糖的含量。

二、测试盒组成和配制:

试剂名称	规格	保存要求	备注		
试剂一	粉剂×1 支	4℃保存	1. 临用前 8000g 4°C 离心 2mim 使 试剂落入管底(可手动甩一甩); 2. 加入 1.3mL 蒸馏水,可分装冻存,防止反复冻融; 3. 保存周期与试剂盒有效期相同。		
试剂二	粉剂 1 瓶	-20℃保存	1. 开盖前注意使粉剂落入底部(可手动用一用); 2. 加入 2. 6mL 蒸馏水备用; 3. 保存周期与试剂盒有效期相同。		
试剂三	65mL 液体×1 瓶	4°C保存			
试剂四	粉剂1瓶	-20℃保存	1. 开盖前注意使粉剂落入底部(可手动用一用); 2. 加入 2. 6mL 蒸馏水溶解备用,可分装冻存,防止反复冻融。		
试剂五	液体 1 支	-20℃保存	1. 临用前 8000g 4°C 离心 2mim 使 微量液体落入管底(可手动甩一甩); 2. 加入 1.4mL 蒸馏水溶解备用,可分 装冻存,防止反复冻融。		

三、所需的仪器和用品:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 1ml 比色皿、离心管、紫外分光光度计、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议正式实验前选取 2 个样本做预测定,了解本批样品情况,熟悉实验流程,避免实验样本和试剂 浪费!

1、样本制备:

- ① 组织样本: 称取约 0.1g 组织(水分含量高的样本可取 0.5g),加入 1mL 蒸馏水,进行冰浴匀浆。 12000rpm,常温离心 10min,取上清置冰上待测。
- 【注】: 做实验前可以选取几个样本,找出适合本次检测样本的稀释倍数 D,果实样本含糖量较高,可稀释 20-40 倍;叶片样本可稀释 2-5 倍。
- ② **液体样品**: 近似中性的澄清液体样本可直接检测; 若为酸性样本则需先用 NaOH(2M)调 PH 值约 7.4, 然后室温静置 30min, 取澄清液体直接检测。
 - 【注】: 可选取几个样本,进行不同倍数的稀释,选取适合本次样本的稀释倍数 D。

2、上机检测:

网址: www.bpelisa.com

- ① 紫外分光光度计预热 30 min 以上,调节波长到 340nm,蒸馏水调零。
- ② 用前使所有试剂解冻或 30℃水浴 15-30min。
- ③ 依次在 1mL 石英比色皿 (光径 1cm) 中加入:

		,					
试剂名称 (μL)	测定管M	对照管M (仅做一次)	测定管N	对照管N (仅做一次)			
样本	25		25				
试剂一	25	25					
试剂二	25	25	25	25			
试剂三	600	625	625	650			
混匀,5min后于340nm处读取各管的A1值							
试剂四	25	25	25	25			
混匀,反应30min于340nm处读取各管的A2值(若A值继续增加,需延长							
反应时间,直至2分钟内的吸光值保持不变)							
试剂五			25	25			
混匀,反应20min于340nm处读取各管的A3值(若A值继续增加,需延长							
反应时间,直至2分钟内的吸光值保持不变)							

- 【注】1.测定管M和对照管M的值可以在读取A3的时候再重读一次,依此也可判读测定管M 在30分钟读取A2时是否反应完全。
 - 2.检测是否反应完全,在每次要读值的时候,可改用时间扫描: 3min,间隔1min,依此判读反应是否完全。然后再读取各测定管的A值。
 - 3.若A3值超过1.5,可减少样本加样量V1:如由25 μ L减至10 μ L,则试剂三相应增加;或对样本进行稀释,则改变后的V1和稀释倍数D代入公式计算。
 - 4.若ΔA值较小如小于0.01,可增加样本量:如由 25μ L增至 50μ L,则试剂三相应减少。

五、结果计算:

 ΔA 葡萄糖= (A2-A1)测定管N-(A2-A1)对照管N;

ΔA果糖=(A3-A2)测定管N-(A3-A2)对照管N;

 ΔA 蔗糖=[(A2-A1)测定管M-(A2-A1)对照管M]- ΔA 葡萄糖;

1、按样本质量计算:

葡萄糖含量(mg/g鲜重)=[ΔA葡萄糖÷(ε×d)]×V2×10³×180.16÷(V1÷V×W)

=0.8×ΔA葡萄糖÷W×D

果糖含量 $(mg/g鲜重)=[\Delta A$ 果糖÷ $(\epsilon \times d)] \times V3 \times 10^3 \times 180.16$ ÷ $(V1 \div V \times W)$

=0.83×ΔA果糖÷W×D

蔗糖含量(mg/g鲜重)=[Δ A蔗糖÷(ϵ ×d)]×V2×10³×342.3÷(V1÷V×W)

=1.52×ΔA蔗糖÷W×D

2、按照体积计算:

葡萄糖含量 $(mg/mL)=[\Delta A$ 葡萄糖÷ $(\epsilon \times d)]\times V2\times 10^3\times 180.16$ ÷V1

=0.8×ΔA葡萄糖×D

果糖含量(mg/mL)= $[\Delta A$ 果糖÷ $(\epsilon \times d \times] \times V3 \times 10^3 \times 180.16 \div V1$

=0.83×ΔA果糖×D

蔗糖含量(mg/mL)=[Δ A蔗糖÷(ϵ ×d)]×V2×10³×342.3÷V1

=1.52×ΔA蔗糖×D

3、按蛋白浓度计算:

葡萄糖含量(mg/mg prot)=[Δ A葡萄糖÷(ϵ ×d)]×V2×10³×180.16÷(V1÷V×Cpr)

=0.8×ΔA葡萄糖÷Cpr×D

果糖含量(mg/mg prot)=[Δ A果糖÷(ϵ ×d)]×V3×10³×180.16÷(V1÷V×Cpr)

=0.83×ΔA果糖÷Cpr×D

网址: www.bpelisa.com

蔗糖含量(mg/mg prot)=[ΔA蔗糖÷(ε×d)]×V2×10³×342.3÷(V1÷V×Cpr) =1.52×ΔA蔗糖÷Cpr×D

ε---NADPH的摩尔吸光系数为6.3×10³L/mol/cm; d---光径距离, 1cm;

V---提取液体积, 1mL; V1---样本体积, 25μL=0.025mL;

V2---反应总体积, 700μL=7×10·L; V3---反应总体积, 725μL=7.25×10·L;

葡萄糖分子量---180.16; 果糖分子量---180.16;

蔗糖分子量---342.3;

W---样本质量, g; D---稀释倍数, 未稀释即为 1;

Cpr---蛋白浓度 (mg/mL); 建议使用本公司的 BCA 蛋白含量检测试剂盒。

网址: www.bpelisa.com